等比数列前n项和的公式是什么
[来源:未知 作者:永春小孩 发表时间:2022-12-28 00:32 阅读次数:]
等比数列是非常重要的数学概念,下面小编为大家总结整理了等比数列前n项和公式,希望对大家有所帮助。 等比数列前n项和公式及推导过程等比数列前n项和公式:Sn =a1(1-q^n)/(1-q)。 推导如下: 因为an = a1q^(n-1) 所以Sn = a1+a1*q^1+...+a1*q^(n-1) (1) qSn =a1*q^1+a1q^2+...+a1*q^n (2) (zhi1)-(2)注意(1)式的第一项不变。 把(dao1)式的第二项减去(2)式的第一项。 把(1)式的第三项减去(2)式的第二项。 以此类推,把(1)式的第n项减去(2)式的第n-1项。 (2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。 于是得到 (1-q)Sn = a1(1-q^n) 即Sn =a1(1-q^n)/(1-q)。 等比数列的性质①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. ③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则 (a2n),(a3n)…是等比数列,公比为q1^2,q1^3… (can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。 (5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1) 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。 (6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列 |
Tags:
责任编辑:永春小孩- 发表评论
-
- 最新评论 进入详细评论页>>