反函数的导数
[来源:未知 作者:永春小孩 发表时间:2022-12-27 18:52 阅读次数:]
设原函数为y=f(x),则其反函数在y点的导数与f'(x)互为倒数(即原函数,前提要f'(x)存在且不为0)。 解题过程原函数的导数等于反函数导数的倒数。 设y=f(x),其反函数为x=g(y) 可以得到微分关系式:dy=(df/dx)dx,dx=(dg/dy)dy 那么,由导数和微分的关系我们得到 原函数的导数是df/dx=dy/dx 反函数的导数是dg/dy=dx/dy 所以,可以得到df/dx=1/(dg/dx) |
Tags:
责任编辑:永春小孩相关文章列表
- 发表评论
-
- 最新评论 进入详细评论页>>