三角函数诱导公式大全
[来源:未知 作者:永春小孩 发表时间:2022-12-21 17:43 阅读次数:]
所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。想要学好高中数学,三角函数诱导公式就必须掌握好,下面是高三网小编整理的三角函数诱导公式大全,供参考。 三角函数诱导公式记忆口诀: “奇变偶不变,符号看象限”。“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。 三角函数诱导公式大全 公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三:任意角α与-α的三角函数值之间的关系(利用原函数奇偶性): sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα sin(π/2-α)=cosα cos(π/2+α)=-sinα cos(π/2-α)=sinα tan(π/2+α)=-cotα tan(π/2-α)=cotα cot(π/2+α)=-tanα cot(π/2-α)=tanα 推算公式:3π/2±α与α的三角函数值之间的关系: sin(3π/2+α)=-cosα sin(3π/2-α)=-cosα cos(3π/2+α)=sinα cos(3π/2-α)=-sinα tan(3π/2+α)=-cotα tan(3π/2-α)=cotα cot(3π/2+α)=-tanα cot(3π/2-α)=tanα 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanαtanβ) tan(α-β)=(tanα-tanβ)/(1+tanαtanβ) 点击查看:高中数学公式大全及高考常用公式 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan2α=2tanα/[1-tan2(α)] tan[(1/2)α]=(sinα)/(1+cosα)=(1-cosα)/sinα 半角的正弦、余弦和正切公式 sin2(α/2)=(1-cosα)/2 cos2(α/2)=(1+cosα)/2 tan2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=(1—cosα)/sinα=sinα/1+cosα 万能公式 sinα=2tan(α/2)/[1+tan2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)] tanα=[2tan(α/2)]/[1-tan2(α/2)] 三倍角的正弦、余弦和正切公式 sin3α=3sinα-4sin3(α) cos3α=4cos3(α)-3cosα tan3α=[3tanα-tan3(α)]/[1-3tan2(α)] 三角函数的和差化积公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 三角函数的积化和差公式 sinα·cosβ=0.5[sin(α+β)+sin(α-β)] cosα·sinβ=0.5[sin(α+β)-sin(α-β)] cosα·cosβ=0.5[cos(α+β)+cos(α-β)] sinα·sinβ=-0.5[cos(α+β)-cos(α-β)] 以上是高三网小编整理的三角函数诱导公式大全,希望对同学们的数学学习有帮助。 高三网小编推荐你继续浏览:高考数学选择题蒙题技巧有哪些 |
Tags:
责任编辑:永春小孩- 发表评论
-
- 最新评论 进入详细评论页>>