arctanx的导数是什么
[来源:未知 作者:永春小孩 发表时间:2022-12-16 16:03 阅读次数:]
arctanx的导数:y=arctanx,x=tany,dx/dy=sec²y=tan²y+1,dy/dx=1/(dx/dy)=1/(tan²y+1)=1/(1+x²)。 证明过程三角函数求导公式(arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) 反函数求导法则如果函数x=f(y)x=f(y)在区间IyIy内单调、可导且f′(y)≠0f′(y)≠0,那么它的反函数y=f−1(x)y=f−1(x)在区间Ix={x|x=f(y),y∈Iy}Ix={x|x=f(y),y∈Iy}内也可导,且 [f−1(x)]′=1f′(y)或dydx=1dxdy [f−1(x)]′=1f′(y)或dydx=1dxdy 这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。 例:设x=siny,y∈[−π2,π2]x=siny,y∈[−π2,π2]为直接导数,则y=arcsinxy=arcsinx是它的反函数,求反函数的导数. 解:函数x=sinyx=siny在区间内单调可导,f′(y)=cosy≠0f′(y)=cosy≠0 因此,由公式得 (arcsinx)′=1(siny)′ (arcsinx)′=1(siny)′ =1cosy=11−sin2y−−−−−−−−√=11−x2−−−−−√ =1cosy=11−sin2y=11−x2 |
Tags:
责任编辑:永春小孩- 发表评论
-
- 最新评论 进入详细评论页>>