数学奇变偶不变符号看象限怎么理解
[来源:未知 作者:永春小孩 发表时间:2022-12-16 16:02 阅读次数:]
奇变偶不变,符号看象限,这句口诀意思是:在诱导公式中,如果你差的角度是90度也就是二分之派的整数倍,可以用此公式。 解释:奇变偶不变,符号看象限 对于kπ/2±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限) 第一象限内任何一个角的三角函数值都是“+”; 第二象限内只有正弦、余割是“+”,其余全部是“-”; 第三象限内只有正切、余切函数是“+”,弦函数是“-”; 第四象限内只有余弦、正割是“+”,其余全部是“-”。 诱导公式 公式一:设α为任意角,终边相同的角的同一三角函数的值相等 sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系 sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三:任意角α与-α的三角函数值之间的关系 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系 sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系 sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:π/2±α与α的三角函数值之间的关系 sin(π/2+α)=cosα sin(π/2-α)=cosα cos(π/2+α)=-sinα cos(π/2-α)=sinα tan(π/2+α)=-cotα tan(π/2-α)=cotα cot(π/2+α)=-tanα cot(π/2-α)=tanα |
Tags:
责任编辑:永春小孩- 发表评论
-
- 最新评论 进入详细评论页>>